Numerical investigation of noise-induced resonance in a semiconductor laser with optical feedback

نویسنده

  • C. Masoller
چکیده

We numerically study the effect of additive Gaussian white noise in the dynamics of a time-delayed feedback system. The system is a semiconductor laser with optical feedback from a distant reflector. For moderate feedback levels the system presents several coexisting attractors, and noise levels above a threshold value induce jumps among these attractors. Based on the residence times probability density, P(I), we show that with increasing noise the dynamics of attractor jumping exhibits a resonant behavior. P(I) presents peaks at multiples of the external-cavity delay time, and the strength of the peaks reaches a maximum value for an optimal level of noise. The results are explained by the interplay of noise and delayed feedback. © 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical comparison analysis of long and short external cavity semiconductor laser

In this paper, considering optical feedback as an optical injection, and taking in to account round-trip time role in the external cavity, a standard small signal analysis is applied on laser rate equations. By considering the relaxation oscillation (f2) and external cavity frequencies (f) ratio for semiconductor laser, field amplitude response gain, optical phase and carrier number for long ex...

متن کامل

Linewidth reduction and frequency stabilization of a semiconductor laser with a combination of FM sideband locking and optical feedback.

We describe a novel method for semiconductor laser noise reduction that uses a combination of optical and electronic feedback. A Doppler-free Faraday resonance in Cs vapor provided both optical feedback and discrimination for an electronic feedback scheme incorporating FM sideband spectroscopy. The introduction of electronic feedback further reduced the low-frequency fluctuation noise power by ...

متن کامل

Improving the Thermal Characteristics of Semiconductor Lasers Using a New Asymmetric Waveguide Structure

   Self-heating leads to a temperature rise of the laser diode and limits the output power and efficiency due to increased loss and decreased differential gain. To control device self-heating, it is required to design the laser structure with a low optical loss, while the heat flux must spread out of the device efficiently. In this study, a new asymmetric waveguide design is proposed and th...

متن کامل

Effects of optical feedback with dispersive loss on the amplitude noise and relaxation resonance of semiconductor lasers

Optical feedback from an external cavity containing an element of dispersive loss was used to reduce the amplitude noise of a semiconductor laser. At feedback levels of Pfb/P0t 1O_2, a maximum amplitude noise reduction of 16 dB was measured close to threshold but the potiential for reduction was reduced considerably at higher injection currents as the laser noise approached the shot noise limit...

متن کامل

Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization.

The period-one (P1) nonlinear dynamics of a semiconductor laser subject to both optical injection and optical feedback are investigated for photonic microwave generation. The optical injection first drives the laser into P1 dynamics so that its intensity oscillates at a microwave frequency. A dual-loop optical feedback then stabilizes the fluctuations of the oscillation frequency. Photonic gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002